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1 Abstract
Dance Dance Revolution is a new style of arcade game controlled entirely by
players’ feet. They dance in time with music by following steps displayed on a
screen. Current incarnations of this game have fixed song selections. Each song
has a step track, consisting of a stream of arrows unique to it, which follows the
timing and style of that piece of music.

The aim of this project is to extract features from music that allow the creation of
new step tracks for arbitrary songs, without human intervention. The result will
be a program, which given a piece of music, will automatically generate a fun and
playable step track unique to that song. This step track can then be used in a PC
based Dance Dance Revolution simulator.

This report details the design of such a program and evaluates its effectiveness.
The development of the program has lead to the discovery of new and powerful
algorithms in music analysis, as well as successfully demonstrating the power of
computers in developing creative works.
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4 Introduction
4.1 Motivation for this Project

Dance Dance Revolution (DDR) is a very popular Japanese arcade game, which
has a player dance in time to different pieces of music. A player stands on a metal
pad with four sensors corresponding to up, down, left and right arrows. The
player steps on these sensors as prompted by a scrolling set of arrows on the
display. In effect the player dances along to a piece of music. An in-depth
description of the Dance Dance Revolution game can be found in the background
section of this report.

The success of this new style of arcade has led to many new versions (or mixes as
they are known) being created for all world markets. Each mix has a fixed set of
songs the player can choose to dance to. To play different songs requires a
different version of the arcade machine.

The popularity of this arcade game has led to conversions and simulators being
written for all major platforms. Many of the simulators have been created such
that they can be extended with new songs.

To add a new song to a simulator requires the difficult and arduous task of
constructing a step track by hand. This requires discovering the exact number of
Beats Per Minute (BPM) for that piece of music. Beats Per Minute is a measure
of the speed of a piece of music, and can be simply explained as the number of
times you would tap your foot to a piece of music in one minute. This BPM
calculation must be correct to within 0.05 BPM or the arrows begin to shift in
relation to the music. The exact timing of beats must also be found, to an
accuracy of around 0.05 seconds, in order to ensure the correct positioning of the
stream of arrows.

Then a suitable pattern of arrows must be chosen and tested. This is difficult to do
and creating a step track that is fun and interesting requires real creativity and
talent.

Due to its time-consuming and difficult nature most players avoid this and instead
download copies of the steps used in the arcade machines, never taking advantage
of the extensibility of the simulators.

This project aims to rectify this by providing a completely automated process for
creating step tracks to any song. In order to achieve this, the inherent difficulties
in step track creation must be overcome.

These difficulties include: Automatically computing the BPM of a piece of music
to within the required tolerance, correctly locating the position of the beats, and
creativity and talent when generating the patterns of arrows.

The main motivation for this project can be found in the behaviours of players
recently introduced to Dance Dance Revolution. Many people, on first
encountering the game, immediately inquire about the possibility of dancing to
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their favourite tune. This is invariably not possible, due to the small selection of
songs provided by the arcade machines. This project aims to overcome this, by
providing a simple mechanism whereby any song can be added to DDR.

4.2 Areas of Major Interest
The first two major problems, finding the BPM and the position of the beats,
could be considered solved problems. There are many algorithms in the field of
music analysis that can extract the BPM and beat positions from a piece of music,
but there are none that can do so to the accuracy required by this project. In order
to reach the required accuracy new ideas and algorithms will be required.

The task of producing fun and interesting step tracks on the other hand, is an
entirely unique problem. The need to imbue the computer with an element of
creative talent vastly increases the difficulty of this task. The step tracks produced
by this project will be required to compete with those developed and refined over
a period of time by professionals.

In order to produce competent step tracks, the computer will need to understand
the structure and events present in the music. This will involve automated
extraction of musical structure, a difficult task with very little research coverage.

Figure 1 – Photograph of a Dance Dance Revolution arcade machine. The two floor pads can
be clearly seen. Unfortunately the screen in the centre is too small to make out the moving
arrows.
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Other musical features such as the structure of beats, and the position of held
notes, would also aid the creation of step tracks.

4.3 Deeper Objectives
There are three objectives to this project that are deeper than just filling a gap in
one gaming genre.

This project aims to show that academic and state of the art music analysis
techniques can be applied to real world problems in an efficient and reliable
manner. Part of this will be to show that disparate areas of research can be
combined together successfully.

Separate from the previous aim is the desire to show the feasibility of computers
generating creative works, in the form of producing new, original, and interesting
step tracks without user assistance.

Finally the project aims to be more than just a research study of feasibility. The
result of successful completion will be an application of sufficient reliability and
quality that it can be released to, and used by, untrained computer users. This
report only lightly touches on this facet of the project, as creating usable polished
applications is a reasonably well solved problem, and the least interesting area of
this project.

4.4 Report Structure
The rest of this report will show that this project fulfilled its objectives, and in
doing so developed some new, and very successful, music analysis techniques. It
is structured as follows:

Background
This section gives an in depth explanation of the Dance Dance Revolution game
and the structure of the step tracks used in it. This is followed by a discussion of
the main literature on beat extraction and BPM calculation, selected literature on
feature extraction from music, and finally a brief discussion of similar projects.

Design and Implementation
This section gives a brief overview of the project design and architecture,
followed by in depth discussions of the interesting or problematic areas of project
implementation. Trivial and/or uninteresting areas of the project are not
mentioned and can be considered to have been implemented successfully.

Testing
This section states the tests performed and the results given in a series of tests to
choose the best parameters for various algorithms. Followed by justification of
the applicability of the Bron-Kerbosch clique finding algorithm and the best
algorithm for representing a beat.
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Evaluation
In this section, a quantitative and qualitative evaluation of the final product is
made. This includes testing the effectiveness of the music analysis algorithms,
along with a critical evaluation of the quality of the step tracks generated.

Conclusion
This final section covers the key aspects of the project and details possible future
work.
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5 Background
This section first explains the Dance Dance Revolution game mechanics, along
with the structure of its step tracks. This is followed by a discussion of the most
applicable literature in music analysis, for both finding the BPM and extracting
musical features. Lastly this section covers projects of a similar nature.

5.1 Dance Dance Revolution
5.1.1 Explanation of the Game Mechanics

To really understand this project first requires an understanding of how the Dance
Dance Revolution (DDR) game functions. It is a very simple game; a player
stands on a pad with four arrows: up, down, left and right. The screen in front of
them has four stationary arrows across the top. A stream of arrows rises up from
the bottom of the screen in time with the music. When a moving arrow overlaps a
stationary arrow the player must step on the corresponding arrow on the pad. In
effect they dance to the music.

The arrows are placed such that they are hit in time with the music. Most of the
arrows occur directly on a beat in the song, but on higher difficulty level arrows
can occur between beats. These arrows are coloured differently to help players
distinguish them. As well as stepping on individual arrows at a time there are
jumps, where two arrows reach the top simultaneously and the player must jump
in order to land on both of them at the same time. Newer versions, or mixes, of
DDR contain freeze arrows, so called because the player must keep their foot on
the pad until the end of the elongated freeze arrow has reached the top of the
screen.

Each mix of the DDR game comes with a limited selection of songs. Each song
can be played in one of three difficulty modes: Basic, Trick or Maniac, with each

Figure 2 – The floor pads used in the Dance Dance Revolution
arcade machines. Only the areas with arrows are buttons. Pads
similar to these can be purchased for home use.
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mode giving a different patterns of arrows. For every song, each of these modes is
also given a difficulty rating in feet, ranging from 1 to 9. A one foot song can be
played even by complete novices, whereas nine foot songs can only be bested
after months of play.

The latest mixes of Dance Dance Revolution contain a revised difficulty rating
system. The difficulty modes have now been renamed to Light, Standard and
Heavy. While the foot rating system has been replaced with a Groove Radar. This
is a graphical representation of the difficulty and composition of the songs. It
measures five attributes: Voltage, Stream, Chaos, Freeze, and Air. Voltage
measures the peak density of steps in a given song, while Stream measures the
overall density of the steps. Chaos shows the irregularity of steps and Freeze
displays the number of freeze arrows. Air gives a measure of the number of jumps
in a song.

Dance Dance Revolution arcade machines have two pads side by side allowing
two players to dance at the same time. They also allow a single player to utilise
both pads by selecting doubles mode. In this mode there are eight arrows at the
top of the screen rather than the usual four, and the player must dance on both
pads in order to successfully hit every arrow.

Figure 3 - A screenshot showing the groove radar and foot rating when choosing a song. The
groove radar can be seen as the pentagon in the lower left. The foot rating for the song is
below and too the left of this.
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The style of music provided by the DDR arcade machines is either cheesy
remixes of well known songs, or specially written dance music. The defining
factor of all DDR songs is that they have a very prominent and stable beat. A few
of the songs change their beat timings, but this is uncommon.

Dance Dance Revolution is the type of game that can only really be understood
by playing it; a written description doesn’t do it justice. More information on
DDR can be found at the DDR Freak website [1] .

5.1.2 DDR Simulators for the PC
Due to its popularity, Dance Dance Revolution has been cloned many times, and
versions of it exist on all major computing platforms. These clones, or simulators,
are not limited to a fixed selection of songs. Any piece of music can be used as a
dance track, so long as the DDR simulator is given a text file, called a step file,
specifying the beat of the music and the patterns of arrows to be displayed.

For the Windows operating system the best DDR simulators are Dance With
Intensity (DWI) [2] and StepMania (SM) [3] . It is possible to purchase dance mat

Figure 4 - A screenshot of a two player Dance Dance Revolution game showing freeze arrows
and offbeats. The freeze arrows are visible as the stretched arrows near the top of the screen.
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controllers for the home, which can be used with both Dance With Intensity and
StepMania to further emulate the arcade experience.

Both DWI and SM accept a variety of formats for the music and step files. Both
accept music encoded as .wav, .mp3 or .ogg files. More information on the Ogg
Vorbis [4] and Mp3 [5] encodings can be found in the references section.

Dance With Intensity only accepts step files in its own .dwi file format. Whereas
StepMania is more accepting, it will import arrow data from .dwi, .sm, .bms and
.ksf files. Detailed information on the .dwi [6] , .sm [7] and .bms [8] file formats
is available in the references section.

Application Music files formats Step file formats
Dance With Intensity .wav, .mp3, .ogg .dwi
StepMania .wav, .mp3, .ogg .dwi, .sm, .bms, .ksf

Table 1 - Accepted music and step file formats for DWI and SM.

The formats of the various step files, although different, require the same basic
pieces of information. These are:

• Beats per Minute (BPM) of the music track. Beats per Minute is a
measure of the speed of the music. If you foot tapped along to a piece of

Figure 5 – A screenshot of the loading screen for the StepManis DDR simulator on the PC.



14

music, the number of times you tap your foot every minute is the BPM of
that piece of music. The music used in DDR can have a BPM rating of
anywhere from 90 BPM to 300 BPM, with the average being somewhere
around 150 BPM.

• Gap value, specifying the amount of time from the beginning of the music
to the first beat. This value allows Dance With Intensity or StepMania to
synchronise the arrows so that they reach the top of the screen in time
with each beat.

• The pattern of arrows to dance to. For certain step file formats more than
one stream of arrows can be placed in a file, each corresponding to a
different difficulty level.

The files also accept a lot of other extraneous information, such as the song name,
title, artist, or background effects to use while dancing.

Both DWI and SM use the same directory structure for storing the music, step
files and other associated files such as background images. This structure consists
of a Songs folder as a subdirectory of the main program. The songs folder
contains a number of sub directories corresponding to groups of music, such as a
group for music from the original DDR mix and a group for music from the
European mix. Within each group there is a folder for each song. Each song
folder contains the music, the step file and background or banner images.

5.1.3 Rules of DDR and its Step Tracks
The style of music used in DDR always has a very prominent and simple beat,
which is usually exaggerated compared to normal music. This beat must be
accurate to ensure the arrow patterns line up correctly. Human drumming is not
accurate enough, thus the propensity for electronic music and remixes in DDR.
The average song only last about two minutes, which is shorter than normal
music due to the physical exertion required.

Most songs in DDR are structured similarly. Three or so base arrow patterns, or
motifs, are repeated, with slight variations throughout the song. Each of these
motifs corresponds to a different section of the song.

#TITLE:DXY!;
#ARTIST:TAQ;
#BPM:148;
#GAP:100;

#SINGLE:BASIC:4:00000000000000004000000060000000B0000000B0000000…
#SINGLE:ANOTHER:6:00000000000000004020202060202020B0208020B08020…
#SINGLE:MANIAC:8:000000000000000040206080402060800(42)0(42)0(68)…
#DOUBLE:BASIC:4:000000000000000040804080206020608000602080006020…
#DOUBLE:ANOTHER:6:0000000000000000000000006060606080600000006080…
#DOUBLE:MANIAC:8:00000000000000004020806080206000000000006086482…

Figure 6 – Excerpt from a .dwi step file. The last six lines are the arrow
patterns for various difficulty levels.
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The variation in these patterns is usually manifested in a mirroring or rotating of
the arrows. For example if a pattern consisted of alternating left/right arrows, it
could be changed to alternating up/down arrows.

Freeze arrows are usually placed where notes are held for a period of time,
making the player keep their feet steady in time with the music. In many cases
while a single freeze arrow is held, other arrows still scroll up the screen. In this
case the player must continue to hit the other steps with their free foot.

The arrow pattern for each difficulty level of a single song, generally builds upon
the previous one. It is easy to spot the same overall structuring of arrow patterns,
even though the individual motifs may have changed.

In DDR only some patterns of arrows are valid. For instance it is not possible to
have more than two arrows reach the top of the screen at the same time. Valid
arrows are either single arrows or jumps. Jumps can consist of any combination
of two arrows. Simple jumps are the up-down and left-right pairs. Complex
jumps, or corner jumps, are the combinations of one vertical arrow with one
horizontal arrow.

Arrows normally occur exactly on a beat, or halfway between two beats.
Although in some more challenging step tracks, arrows do occur at other, more
arbitrary, positions.

Figure 7 - Diagram of the directory structure used for storing
step files and music for DWI and SM. Each of the deepest
nested folders contains the music, step file and background
for a single DDR track.
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Finally, the arrow patterns of official songs have a ‘flow’ to them, which means it
is usually possible for a player to follow the patterns with alternating feet and
never be forced to cross their legs or awkwardly shift their weight.

5.2 Beat Detection
One of the most important parts of this project is the algorithm used to extract the
beats, and thus BPM, from the music. Without an accurate estimate of the BPM
the arrows from the step file will not occur on time with the beats in the music
and it will be impossible to dance to the step track. Beat detection is a Digital
Signal Processing (DSP) problem. A brief introduction to Digital Signal
Processing is available in the appendix and explains many of the terms used to
those who are not familiar with them. More information on Digital Signal
Processing is also available at the DSP Guru website [9] .

There are many approaches to detecting the beats and calculating the BPM of a
piece of music. The main literature in this area is discussed below. An overview
of each paper and the algorithm used within it is given below, along with brief
discussion of it accuracy and applicability. The reader is encouraged to read each
of the papers in full for more detail, the aim here is give a brief introduction to the
many ways in which beat detection can be performed. The papers are listed
roughly in order of their perceived importance to this project. All diagrams from
within this section come from their respective papers.

5.2.1 Tempo and Beat Analysis of Acoustic Musical
Signals

Tempo and Beat Analysis of Acoustic Musical Signals – Eric D. Scheirer [10]   

Scheirer’s paper is one of the most frequently referenced papers on beat detection
from real world (polyphonic) music. The paper goes into detail of the
implementation of a fast, close to real time, beat detection system for music of
any genre. It also provides experimental results of its accuracy.

The algorithm works by first dividing the music into six different frequency
bands using a filterbank. This filterbank can be constructed using a number of
low-pass, band-pass and high-pass filters.

The envelope of each frequency band is then calculated. The envelope is a highly
smoothed representation of the positive values in a waveform.

The differentials of each of the six envelopes are calculated, they are highest
where the slopes in the envelope are steepest. The peaks of the differentials would
give a good estimate of the beats in the music, but the algorithm in the paper uses
a different method.
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Each differential is passed to a bank of comb filter resonators. In each bank of
resonators, one of the comb filters will phase lock with the signal, where the
resonant frequency of the filter matches the periodic modulation of the
differential.

The outputs of the all of the comb filters are examined to see which ones have
phase locked, and this information is tabulated for each frequency band.
Summing this data across the frequency bands gives a tempo (BPM) estimate for
the music. Referring back to the peak points in the comb filters allows the exact
occurrence of each beat to be determined.

The beat detection strategy used in this paper has demonstrated high accuracy and
has been implemented many times by different parties. It can cope with a wide
variety of music genres and fits the requirements of this project. The speed of the
algorithm may also be advantageous to this project.

The algorithm is very complex and may be time consuming to implement. By
working with music in a stream, it fails to take advantage of the ability to analyse
all of the music as one element. This means that while the accuracy may be good
enough to tap along with users in real time; it may not be able to determine the
BPM to a sufficient accuracy for this project.

Figure 8 - Schematic view of the very popular beat
detection algorithm proposed by Scheirer.
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5.2.2 Beat Extraction from Digital Music
Beat Extraction from Digital Music – Will Archer Arentz [11]

This paper is a useful reference as it takes the same perspective as this project; it
is concerned with calculating the BPM of a song in a non-real time manner. In
doing so is able to provide a high level of accuracy.

The algorithm proposed in this paper has two phases. Initially the music is filtered
to remove 95% of the samples with the lowest amplitude. This is a very rough
way of extracting the peaks that is unaffected by the quiet- or loud-ness of the
music. The remaining samples can then be treated as beats in the music.

The next step is to determine which BPM matches most closely to the remaining
samples. This is done by testing all possible BPMs within a certain range, 60-160
BPM in this paper, and counting the number of beats that occur exactly on time
with that BPM. The calculation of which beats occur for a given BPM is done by
specifying the BPM in terms of the number of samples between each beat, say k.
Every beat is then tested to see the number of other beats that occur at a time
which is an exact multiple of k above or below the time of the beat being tested.
For each value of k the corresponding number of matching beats is stored in a
table.

Once all possible values of k within the BPM range have been calculated, the
entry with the highest number of corresponding beats is taken to be the correct
value for the number of samples between each beat. It is then trivial to convert
this to a BPM value.

The approach used by this paper is very simplistic, devoid of any theory or
application of research into the human perception of music. Despite this, it
generates accurate results, to within 0.1 BPM for 95% of the music tested.

The paper makes no mention of calculating the positions of the beats, and is thus
of no help in determining the gap value of a piece of music. The lack of
theoretical basic to the algorithm is also disturbing, but is lessened by the
extremely good empirical results.

Figure 9 - Schematic view of the simple beat detection algorithm proposed by Arentz.
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5.2.3 The Beat Spectrum: A New Approach to Rhythm
Analysis

The Beat Spectrum: A New Approach to Rhythm Analysis – Foote, Uchihashi
[12]

This paper provides yet another approach to determining the beats, and therefore
the BPM of a piece of music. The method discussed in this paper uses self-
similarity to characterise the rhythm of the music, giving a beat-spectrum from
which the BPM can be extracted.

The initial step in the algorithm is to compute some measure of self-similarity.
The method used in the paper is based on the distance-matrix, in the paper
Visualising Music and Audio using Self Similarity [14] , which is discussed in the
next section on feature extraction. The music waveform is divided into
overlapping frames a few hundred samples wide. A fast Fourier transform is
performed on each frame. The logarithmic of the magnitude of each result gives
the power spectrum for each frame.

A 2-dimensional representation of the similarity of the music is created by
plotting the similarity of each power spectrum with respect to every other. This
gives a plot of time against time, where the value at every point represents the
similarity of the music at the two given times.

Figure 10 - Self-Similarity matrix for Bach's Prelude No.1 with its associated beat spectrum.
The diagonal white lines in the matrix correspond to the peaks in the beat spectrum. The
peak at two seconds in the beat spectrum shows that each bar of music lasts two seconds.
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The beat spectrum itself is determined by summing all points in the similarity
matrix that have the same difference in time between each axis. This is equivalent
to summing along each diagonal line in the self-similarity matrix.

The peaks in the beat spectrum can be used to calculate the BPM of the music.
Taking the distance between zero and the highest peak in the spectrum and
dividing this by the number of peaks from zero to the highest peak, gives you the
interval between each peak; from this it is trivial to calculate the BPM.

There are many advantages to the approach taken by this paper. By solely using
self-similarity and auto-correlation, the algorithm can work with all genres of
music equally well. The paper also suggests that the algorithm gives very robust
results and is not prone to mistakes or failure. Changes in BPM during a piece of
music are detected easily.

Although initially this algorithm looks very promising in its applicability for this
project, there are a couple of areas where it seems to be lacking. The first is with
the accuracy with which the BPM can be calculated. The paper claims accuracy
to within 1%, unfortunately this is not nearly accurate enough for this project. The
algorithm also seems computationally very expensive; the paper makes no
mention of the efficiency of the algorithm in this respect.

5.3 Extracting Features from Music
There is little appropriate literature on the subject of feature extraction from
music that can be applied to this project. Most algorithms used to perform feature
extraction are used in information retrieval systems, where the idea is to reduce a
piece of music to a small vector of relevant data. Unfortunately this does not help
in this project, where the aim is to analyse the music to discover the times at
which various features occur. The few available papers with relevant ideas are
covered below.

5.3.1 Locating Singing Voice Segments within Music
Signals

Locating Singing Voice Segments within Music Signals – Berenzweig, Ellis [13]

This paper presents a technique for locating portions of music during which
vocals are present. The results may be useful for applying different arrow patterns
to vocal or instrumental sections.

The algorithm proposed in the paper uses a complex system of speech recognisers
to detect individual vocal sounds. Each speech recogniser is tuned to respond
highly to a certain phonetic sound, with sharp cut-offs on either side of that
sound. To music, the speech recognisers respond with very low levels over a
longer time period. This information can be used to classify whether a section of
music contains vocals.
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A simple Hidden Markov Model (a type of state machine, see elsewhere for a full
definition [17] ) is then used to interpret the data from the speech recognisers and
label sections of data as either vocal or instrumental.

The algorithm used in this paper achieved 80% accuracy in determining vocal or
instrumental sections. As the accuracy of determining these sections is not critical
to this project, this algorithm could be used.

The main draw back with this algorithm, at least with respect to this project, is its
complexity. It requires a number of speech recognisers which are able to detect
various phonetic sounds, this is computationally expensive and a much simpler
method of doing things is likely to be just as useful.

5.3.2 Visualising Music and Audio using Self-Similarity
Visualising Music and Audio using Self-Similarity – Jonathan Foote [14]

The Beat Spectrum: A New Approach to Rhythm Analysis [12] explains the use
of self-similarity for BPM extraction. Self-similarity is also a very useful tool for
extracting structure from musical pieces. This paper provides a more detailed
overview of the uses of self-similarity.

Figure 11 – Self-similarity matrix of Day Tripper by the Beatles,
annotated with structural information. Self similarity can be used
to detect structure such as repetition for use in arrow generation.
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The basics of computing audio self-similarity were given in the discussion of The
Beat Spectrum. This paper provides a much more in-depth discussion of exactly
how it is calculated and the reader is encouraged to read it.

The interesting point in this paper is the discussion of the use of audio self-
similarity for discovering features in the music. Many examples are discussed in
which it is shown that self-similarity shows the potential to be able to
automatically detect repetition and structure in a piece of music. It may be
possible to automatically determine the locations in time of each chorus in the
music. This is extremely useful for this project, as it provides a time structure to
link the structure of the arrow pattern to. Unfortunately the paper only theorises
about the possibility of extracting the structure, no implementation ideas are
discussed.

The paper also shows the potential of self-similarity for discovering parts of
music which lend themselves to be used for freeze arrow placement. Areas that
do not change are coloured bright white on the similarity plots. These unchanging
sections of music are perfect for placing freeze arrows.

Self-similarity provides a very useful method of analysing the structure of music,
and it is particularly applicable to this project. Its main flaw is its computational
cost, working out the similarity of every section of music to every other section is
a time consuming process.

5.3.3 Riddim: A Rhythm Analysis and Decomposition
Tool

Riddim: A Rhythm Analysis and Decomposition Tool Based on Independent
Subspace Analysis – Iroro Fred Onome Orife [15]

This paper is very long and in-depth look at computer analysis of music and
rhythm in general. It provides a detailed description of an algorithm based on that
proposed by Eric D. Scheirer, but with greater applicability to music with a more
complex rhythmic structure.

It is of interest mainly because of a technique known as Independent Subspace
Analysis. This is a technique for dividing a complex stream of music into its
constituent parts. It will divide a piece containing many different instruments into
individual streams comprised of the sound generated by each instrument. Once
the streams have been separated they can be analysed independently.

Although this paper is very detailed in its background and algorithmic
explanation, it lacks much information about the quality of the results obtained.
The main aim of this paper also differs somewhat from the aims of this project.
Nevertheless there is valuable insight to be gained from the paper, and the use of
Independent Subspace Analysis may be useful for feature extraction.

5.3.4 An Automated Structural Analysis of Music
Listening to “Naima”: An Automated Structural Analysis of Music from
Recorded Audio - Roger B. Dannenberg [16]
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This paper describes an approach to automatically deriving the structure of
musical pieces. This is of importance to this project, as the identification of
repetition in music will allow the correct repetition of motifs in the step track.

The approach of the algorithm is to extract the melody from a piece of music,
before transcribing this into a series of pitches and their associated durations.

Then a self-similarity matrix, like that described in Visualising Music and Audio
using Self-Similarity [14] , is constructed. From this, areas of similarity (diagonal
bright lines) are extracted into clusters of similar areas.

These clusters of similar areas show which points in time each point in the music
is similar to. This representation is very complex, and in order to simplify it a
naïve parsing algorithm is used to extract a one-dimensional sectioning of the
music. This places each point in time as a member of a single section.

The algorithm proposed in this paper has only been tried on three songs, and only
produced successful results for two of these. It also currently requires human
assistance and tweaking to provide reliable results. Because of this, in its current
form, it is not directly applicable to this project, but many of its ideas could be
useful.

5.4 Arrow Pattern Generation
It is not really surprising that there is no current literature on the problem of
automatically generating Dance Dance Revolution arrows given an arbitrary piece
of music. The only mention of arrow generation is two projects with a similar
theme to this one.

5.4.1 Project Proposal – Dance Dance Revolution
An engineering project with scope somewhat overlapping this project’s has been
proposed at MIT [18] . It is mainly concerned with implementing a complete
system, from music, to dance pad, to video game. As the system is to be
implemented almost entirely in hardware, the logic for constructing the patterns
of arrows has to be relatively simple. The approach suggested in the proposal is to
keep a number of different patterns in memory and randomly pick a stream of

Figure 12 - A visualisation of the clusters found by the Automated Structural Analysis of
music paper. The thick black sections joined by thin lines indicate similar clusters. The small
black dots at the bottom indicate extracted pitches.
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these patterns. The system makes no analysis of the music to aid its arrow
generation.

Unfortunately there is no information available as to the results of the completed
project, its efficiency or accuracy.

5.4.2 Digital Dancer
This is project by the ACM group at the University of Illinois [19] , attempting a
similar hardware based approach to the MIT project proposal. So far they have
created the dance mats and a program to display the streaming arrows, but have
not yet completed the code to create the stream in real time.

They use a simple beat detection scheme similar to the first half of algorithm
proposed in Tempo and Beat Analysis by Eric Scheirer, simplified due to
constraints of the hardware they are using.

Unfortunately there is no information present on their web site to explain how
they are approaching the task of generating the arrow patterns.

Figure 13 – The Digital Dancer project from the
University of Illinois takes a similar, but more
hardware based, approach to the same problem this
project addresses.
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6 Design and Implementation
This section of the report gives a very brief description of the design and
architecture of the project, before detailing the most difficult and interesting
problems faced and the approaches taken to solving them. This is not a complete
account of all areas of the project, many small details are omitted and can be
assumed to have successfully implemented. This approach was taken in order to
increase the readability of this report.

6.1 Design and System Architecture
The system is divided into five main areas, as shown in the figure below.

The first section decodes music files from a given selection of formats; in the
final implementation mp3s and wave files are supported. The output of this
section is processed by the second section in order to extract the BPM and gap
value for that piece of music. With knowledge of the position of the beats, the
music is processed by the third section to extract relevant features, including the
structure of the song in repeating sections. Using the extracted features, the fourth
section generates the pattern of arrows for each difficulty level. Finally the fifth
section outputs these arrows into text files in either the .dwi or .sm format.

6.2 Implementation Overview
The project was implemented in MATLAB [23] , a matrix based programming
language with excellent support for digital signal processing. To produce the final
application, the MATLAB code is first converted to C, and then compiled for the
Windows platform. This can be done automatically by MATLAB.

.wav .mp3

Music file
decoder

BPM and
Gap

calculation

Arrow
generation

Step file
creation

Music file input

.sm.dwi

Step file output

Feature
extraction

Figure 14 - Overall system architecture for this project.
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The music decoding is accomplished through a call to LAME [24] , a command
line mp3 encoding and decoding application. The decoded mp3s are then natively
loaded into MATLAB.

6.3 Calculating Beats per Minute and Gap
Value

Once loaded into MATLAB, the song is processed to extract the BPM and gap
value. It is assumed up front that any song has same BPM all the way through and
that the BPM is very accurate (i.e. machine generated). This assumption turns out
to hold for most pop music and styles of music used in DDR. The assumption
does heavily limit the possible input range, but allows for the use of faster, more
accurate algorithms.

The technique used in this project is similar to that in the Beat Extraction from
Digital Music paper [11] , but was developed independently. It is assumed that
beats are always signalled by the playing of a bass instrument. This is a valid
assumption in this project, due to the type of music used in DDR.

Bass instruments are low frequency but have a high energy. This means they have
the greatest amplitude, and thus correspond to the peaks, in the waveform.
Therefore picking the highest peaks from the waveform will give the time at
which each beat occurs. By measuring the gaps between these peaks it is possible
to work out the length in time of each beat, and thus the BPM.

It turns out not to be so simple in practice. When a drum is hit (or any instrument
is played) it does not just create a single peak in the waveform. It creates a
number of very rapid peaks, depending on its frequency, these peaks start very
high and decay rapidly. Therefore simple peak picking would give many peaks
for each beat. One way to avoid this happening is to create a smoothed version of
the waveform, where all the rapid oscillations are removed, but the overall shape
of the waveform is preserved.

Figure 15 – This images shows a waveform, and what can be considered a smoothed
representation of that waveform (the dark line). Smoothing allows more reliable peak
picking.
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In this project, this smoothing is performed by filtering the waveform with a low
pass filter. This is a standard signal processing technique for removing unwanted
high frequencies.  A simple explanation of a digital filter is given in the appendix.
The testing section covers how the most appropriate filter was chosen.

This filtering adds another complication; it shifts the position of elements in the
waveform. Different frequencies in the waveform are shifted by different
amounts. Therefore it is no longer possible to know where the peaks in the
smoothed waveform actually were in the original waveform. This is not a
problem for BPM detection, as peaks from the same instrument will all be shifted
by the same amount, so the relative distances between beats stays the same.

But the shifting means it is no longer possible to accurately determine the gap
value. There exists a simple but infrequently used solution: reversing the filtered
result and passing it back through the same filter. No more frequencies are
removed, but exactly the same amount of shift is applied to each frequency in the
opposite direction, thus returning all points to their original positions.

This technique is not frequently used because it requires the whole waveform to
be known in advance. This is usually not the case in most signal processing
applications, but in this project the whole waveform is known so this technique
can be applied.

 To improve peak picking for songs with both loud and quiet sections, the highest
peaks are taken within small sections of music, rather then just the tallest peaks in
the whole waveform. This ensures that beats in quiet sections of music can still
contribute to finding the BPM.

Even with a single peak per beat, the simple method of calculating the interval
between beats (and thus BPM) by taking the mean (or median) of the distances
between peaks gives an estimate of the BPM with an error of around ±3 BPM.
The variability in this estimate is too great for use in DDR. The error really needs
to be less than ±0.05 BPM.

Therefore an alternate strategy is taken: For every possible BPM, within
reasonable limits, it is computed how well the beat data fits that BPM. Then the
BPM value which fits ‘best’ is chosen.

This requires some measure of the fitness of a particular BPM value. For every
BPM, it is simple to calculate the time interval between beats that it represents.
Therefore for a single BPM, and thus interval, a gap value can be computed for
each beat. This is simply the remainder of each beat position after dividing by the
interval. In a plot of gap values against time, a dense horizontal collection of
points indicates that there are many beats that agree on the same gap value, and
thus many that support the BPM being tested. The BPM with the most support is
taken to be the correct BPM.

The difficulty with this method is in reliably detecting dense and horizontal
collections of points in a manner that allows a single measure of fitness to be
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computed. The approach taken in the final implementation of the project is
described below, and as a side effect it also calculates the optimum gap value.

A window is moved over the range of possible gap value, and at every point the
number of calculated gap values within the window is counted. These counts give
a measure of the fitness of each possible gap value. A bell shaped window is
used, which ensures denser collections of computed gap values are considered
fitter. Additionally biasing counts based on the strength of the beats producing the
gap values reduces the effects of spurious beats.

The maximum fitness of the gap values is used as the fitness of the BPM being
tested. Stored with the fitness of the BPM is the value of the fittest gap value.
Once it has been worked out how ‘fit’ each BPM is, the fittest is picked as the
BPM to use in the step file. If no BPM stands out as being appreciably fitter than
any others, than it is concluded that the algorithm has failed to find the correct
BPM (if a correct BPM exists). Once the BPM has been determined, the gap
value used is the fittest of the gap values for that BPM.

It turns out that the fitness function used in the implementation of this project has
a bias towards higher BPMs. This occurs because high BPMs have smaller
intervals between beats. Therefore there is less possible distance between the gap
values we compute, and thus there will be more gap values in each window.

To rectify this it is possible to fit a polynomial curve to the results of the fitness
function, and use this to normalise the fitness function to a flat line. This ensures
any peaks on the fitness function can now be compared using their absolute value.

Figure 16 – This plot shows the fitness of each BPM against the interval between beats for
that BPM. The bias towards higher BPMs (on the left side of the plot) can clearly be seen as a
rising of the minimum fitness found.
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6.4 Feature Extraction
6.4.1 Representation of a Beat

In order to simplify the arrow creation section of this project, each beat (and
offbeat) is transformed from its waveform into a much simpler canonical
representation. This representation can then be used to aid the arrow placement
algorithm.

One very simple piece of information can extract for each beat of music is its
energy. This is given by converting the waveform to a positive representation
through squaring, and then calculating the area underneath this new squared
waveform.

Low frequency instruments, such as drums and bass guitars, have higher energy
signals than other instruments. This fact combined with the squaring of the
waveform means that low frequency (bass) instruments dominate the energy
representation.

This does not cause too much of a problem in the context of this project, as the
events that are most interesting are beat orientated, which tend to be events
generated by bass instruments.

These are not the only events of interest though, and in the energy representation
of a beat, other events such as singing or melodies are drowned out by bass
instruments.

Another method of creating a feature representation of each beat is a voice
analysis technique known as Mel Frequency Cepstral Coefficients (MFCC) [25] .
This technique works out, for a period of time (such as one beat), a feature vector
of thirteen elements. These elements correspond to events in different bands of
frequencies.

This richer representation allows for information, such as the presence of events
in the frequency band in which singing occurs, to be used when placing arrows.

An MFCC library routine was tested in this project for its applicability in
generating a representation of each beat. Unfortunately it was found that this

Figure 17 – The above bar graph shows the varying energy levels of each beat and offbeat
throughout a test song.
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representation produced less accurate results in later functions (such as computing
self-similarity and grouping beats) than the simple measure of energy. Further
discussion of this can be found in the testing section.

6.4.2 Extracting the Structure of a Song
An important feature in official DDR step files is structure. Most official tracks
feature a particular pattern of four to eight arrows that are repeated in the main
areas of the song. Small sections of music that sound the same usually have
similar arrow patterns.

The step files generated by this program should exhibit a similar structure. This
can be accomplished by working out which areas of a given song are similar to
other areas.

The paper Visualising Music and Audio using Self-Similarity [14] provides a
method of producing images, showing which instants of a piece of music are
similar to other instants of that music, known as self-similarity matrices. This
seems highly applicable to problem faced here. An explanation of the algorithm
used is given in the background section.

The instant of time for computing similarity in this project is a half a beat. This
gives a high enough resolution to make informed decisions about placing offbeat

Figure 18 - Self Similarity matrix for All the Things She Said by Tatu. The top left indicates
the start of the song. The light grey squares along the centre diagonal indicate different
sections of the song.
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arrows. Using the proposed algorithm we can compute which half beats are
similar to other half beats. Although rather than use MFCC or a Fourier transform
as our feature vector for each half beat, we use energy as discussed above. Along
with producing clearer images of self-similarity using energy as our
representation makes the algorithm a lot faster. The different feature vectors are
discussed further in the testing section.

It turns out that just knowing the similarity between half beats is not altogether
too useful. It is on too fine a scale to make easy decisions about the patterns of
arrows. Half beat time intervals are too short to be able to compute sensible
grouping for a song.

Most music is divided into fixed size bars. Major changes in the music usually
occur only on the boundaries between these bars. Thus if we take our time period
to be the bars of the music we can produce a more useful self-similarity matrix.
This introduces the sub problem of dividing a piece of music into bars.

For this project, the assumption is made that all music is in 4/4 time. This means
that there are always four beats (and thus eight half beats) in every bar. This may
seem restrictive, but it turns out to be a reasonably valid assumption. Almost all
of the music used in DDR is in 4/4 time.

Therefore the problem is now simply finding when the bars of music start. With
only four beats in every bar, there are only four possibilities to check. Each can be
tried and the best, with respect to some measure, can be taken as the correct one.

Figure 19 – A similarity plot of All the Things She Said by Tatu, with each
pixel being one bar of music. This representation can be converted to a linear
structural representation of the song.
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This requires some method of measuring how good a bar division each position
gives. The algorithm chosen in this project is, for each position, to calculate a
self-similarity matrix with a time period of a whole bar. The self-similarity matrix
with sharpest differences between bars is likely to be correct division of music
into bars.

There are a few different approaches to quantifying this measure of sharpness.
The testing section details the approaches tried, and the final method settled on.

Knowing the division of the song in bars, and a measure of how similar each bar
is to every other bar gives a very detailed account of the structure of the music.
Unfortunately this representation is too complex to use for placing arrows. A
simpler, linear, representation is needed, where each bar belongs to a single
group, and every member of that group is similar to every other.

For these groups it is unimportant if members of a group are contiguous bars or
not. In order to produce the best translation of the self-similarity matrix to these
groups, the final representation should contain as many large groups of bars as
possible. In order to decide if a bar is similar enough to another bar, simple
thresholding can be performed on the self-similarity matrix.

If we treat each beat as a node on a graph, and draw an arc between each pair of
nodes if the nodes are similar, we have an undirected graph representation of our
data.

This problem of finding the division into as many large groups as possible is then
equivalent to solving the minimum clique partition problem of the graph
representation. A clique is sub section of nodes in which every node in the sub
section is connected to every other node in the sub section. A minimum clique
partition is a division of a graph into cliques such that the minimum number of
divisions is made.

The minimum clique partition is a well-known NP complete problem, and a very
computationally intensive one at that. No efficient implementation algorithms
have been proposed, even for small graphs (There is one paper that claims to have
a polynomial time algorithm, but this would imply P = NP and thus is not likely
to work in practice).

The naïve, or brute force, approach to this problem, where all possibilities are
tried and the best taken works for very small graphs of around eight or less nodes.
After this the algorithm takes much too long to execute. The number of nodes (or
bars) in the songs in this project range from fifty to one hundred nodes, so the
naïve algorithm cannot be used.

Therefore the project instead uses an efficient but non optimal algorithm. The
testing section gives a qualitative evaluation of how un-optimal the solution really
is.
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Part of the minimum clique partition problem is the problem of finding all of the
maximal cliques in the graph. A maximal clique is a clique that cannot be made
any bigger by adding new nodes while remaining a clique.

Finding all maximal cliques in a graph is also a well-known NP complete
problem.

But efficient algorithms are available for reasonably sized graphs, with fifty
nodes. The testing section shows that, even though graphs with up to one hundred
nodes are found in this project, the efficient algorithms are still applicable.

The algorithm used in this project is that proposed by Bron and Kerbosch [22] . A
highly efficient implementation of the Bron Kerbosch algorithm has been
developed by Dr Richard Mitchell (a lecturer in cybernetics at Reading) in
MATLAB, and it is this implementation that is used in this project.

Once the maximal cliques have been found, a greedy algorithm is used to divide
the song into groups. This is non-optimal but efficient. It works by taking the
biggest clique as a group; from all remaining cliques, removing nodes already in a
group; and repeating this until only single element or empty cliques are left.

A refinement is made to ensure that songs which are similar all the way through
are still given interesting structure. If the biggest clique covers a large percentage
of the song, it is ignored and smaller cliques which will give better partitioning
are chosen.

The greedy approach works well in practice, and reliably divides songs in a way
that human listeners would agree with. This is discussed in greater detail in the
testing section. The lack of a guaranteed optimal solution does not seem to be a
problem.

The use of this grouping for arrow creation is discussed later.

Figure 20 - A minimal clique partition of an acyclic graph. The problem of
computing the linear structure of a song can be considered equivalent to
finding a minimal clique partition.
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6.4.3 Pauses
In DDR arrow streams can pause for a period of time and stop scrolling up the
screen. This technique is used when there is a sudden stop in the music and a
period of little or no noise. In order to recreate this, a technique for locating these
silent periods in each song is required.

These silent periods can be found by looking for contiguous beats that have an
energy representation below a certain threshold. In keeping with the arrow
generation procedure, which is explained later, pauses must start and end on the
boundaries between bars.

This assumption that pauses only ever occur for whole bars at a time is
reasonably valid. It does not hold in all cases, but in many songs it holds true.
Making this simplifying assumption helps reduce erroneous positioning of pauses
in many songs.

The assumption is made because music is normally structured such that major
events, like a pause, only occur for whole bears at a time. Of course not all music
follows this rule.

6.4.4 Freezes
Later DDR mixes introduced a new type of arrow, called a freeze arrow. A freeze
arrow is simply an elongated version of a standard arrow, which is long enough to
be spread over many beats. The player must keep their foot on the pad for the
whole length of time the freeze arrow is scrolling past the top of the screen. They
are mainly used when a note is held for a period of time.

To enable their use in this project mechanism is required for detecting when a
note is being held. This can be formulated alternately as the periods of time in
which no new musical events are heard. I.e. any sound that is still perceivable
must have come from the last note played.

This formulation is not exactly equivalent to finding notes that have been held.
For the purposes of this project it will suffice, as accurately determining when
notes have been started and stopped in polyphonic music is an unsolved problem.

Freeze arrows are treated more like normal arrows than pauses, so there is no
restriction on them occurring only for the length of full bars. There is a
requirement that they start and end exactly on a full beat, rather than starting on
an offbeat.

The algorithm used for finding periods of time with no music events, and thus
periods of time that can be used for freeze arrows, is given below.

A musical event is designated as an onset occurring in the waveform. This
ensures that major events such as a new note being played are detected, but slow
building of volume is not counted as an event. This is in keeping with the use of
freeze arrows in official DDR songs.
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To locate uneventful periods, and thus freezes, we wish to find all onsets, no
matter what the instrument used. Therefore it is not possible to just check our list
of previously found beats, as this only contains bass events.

Onsets are detectable as sharp increases in amplitude in the waveform except, due
to high frequency instruments and noise, sharp increases in amplitude occur at all
points in the waveform. The smoothed version of the waveform removes these
high frequency components and leaves sharp inclines only when onsets occur.

Calculating the gradient at every point in the smoothed waveform will give a new
waveform in which the peaks correspond to onsets or musical events. Now
finding a possible freeze position is as easy as finding a period of time for which
the gradient waveform is below some threshold.

In DDR freeze arrows normally start on the onset of the note which is being held.
Therefore the start of the freeze arrows is one beat earlier than the low threshold
period.

The use of these freeze positions for placing arrows is explained in the next
section.

6.5  Arrow Generation
Once the pertinent features of the music have been extracted, the next stage is for
the computer to generate arrow patterns for each song.

There is no set algorithm to do this, no right or wrong arrows to produce, only a
user subjective ‘good’ or ‘bad’ opinion on the generated arrows. Therefore the
generation technique used in this project is a collection of rules and heuristics to
guide the program and improve its chances of generating a ‘good’ stream of
arrows.

This is not the only strategy that could have been taken. Initially it was hoped that
the project could train a neural network to produce the arrows. This option was
discarded early on for two reasons. It became clear that the music analysis section
would require a large portion of time to implement, and that there would be
insufficient time to design, train and evaluate a neural network system. Secondly,
state of the art for neural networks is not very advanced. The music analysis data
would constitute a very large number of inputs and require a very large neural
network before any non-trivial behaviour emerged.

It was recognised that better results could be produced faster by use of hard-coded
ad-hoc rules and heuristics. The most interesting of these rules and heuristics are
explained below.

6.5.1 Tracking Foot Placement and Ensuring ‘Flow’
After playing DDR for a while, players begin to notice that there is a way to
follow the arrows such that your feet seem to flow easily from one arrow to the
next. You alternate feet for every arrow and the next one always seems to be in a
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natural position. The player never has to awkwardly shift their weight or break
their rhythm to follow the pattern.

The initial proposed system for choosing arrow patterns in a manner that would
ensure they flow, was to have a database of short arrow patterns and choose a
combination of these patterns to build up a complete step track. It was hoped that
copying the short arrow patterns directly from the arcade machine, would ensure
a high quality of step track.

Unfortunately a study of the patterns used in the arcade machines shows that
almost every conceivable pattern of arrow occurs in at least one step track.

Figure 21 - An example step track from the Rage with Intensity website. The use of
repeating but subtly altered patterns can be seen throughout.
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Therefore the database would become prohibitively large, and would not provide
much guarantee of quality.

As an alternative approach to ensuring flow, a set of rules has been created which
captures the knowledge required to allow the program to create flowing arrows. It
works by both keeping track of the position of the players feet on the pad, and by
a list of rules showing the valid arrow possibilities from each position which will
still ensure flow.

With 4 arrows on the floor pad, and 2 feet, there are theoretically 12 possible
different positions the player can be in (There are four possible positions to place
the first foot, and then only three possible positions to place the second foot, as
one arrow is already taken. Thus 4¥3 = 12 possible positions).

This is of course assuming that the player only ever stands on the arrows, and
avoids all the blank sections of the pad. This assumption turns out not to be true,
beginner players almost always stand with both feet in the centre of the pad and
only gingerly reach out to step on the arrows. This turns out not to be a problem
as beginner step files have large gaps between arrows such that there is always
time for a player to shift their weight, and flow is not a problem.

One of the 12 possible positions turns out not to occur in practice. This is the
position where the player has their back completely to the screen, with their left
foot on the right arrow, and their right foot on the left arrow. Therefore the rules
only need to deal with 11 positions.

There are 4 other positions, where the user is almost facing away from the screen,
which occur very infrequently and only on higher difficulty levels. These are
characterised by the player having either their left foot on the right pad, or their
right foot on the left pad.

For each of the 11 positions there are 3 theoretical moves for each foot (stay
where it is or move to one of the two unoccupied arrows). In practice, some of
these moves never occur, and others occur only infrequently. This knowledge of
which moves are possible from which positions is encoded into the project in the
form of the probability of moving from one foot position to another,

These probabilities were picked by hand, through prior knowledge of DDR. They
could have been better estimated through automatic analysis of existing step files,
but due to time constraints this was not possible. It was felt that the increase in
accuracy gained would be negligible compared to the effort expended.

6.5.2 Placing Arrows
To decide when is a good time to place an arrow and when a gap should be left in
the step file, the canonical representation of a beat is very useful. In this case the
canonical representation of a beat is a measure of its overall energy.

A simplistic algorithm, where an arrow is placed if the energy is greater than
some threshold, does not scale well to producing arrow patterns at a given
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difficulty level. It also tends to leave quiet sections completely blank, and
populate loud sections with too many arrows.

To overcome this, a different strategy was used. Each difficulty level in DDR can
be considered to have a standard range for the possible number of arrows per
song. This fact can be used to ensure the total number of arrows placed is correct
for a given difficulty level. To do this, first the total energy of each bar is
calculated, giving a measure of the loudness of all the bars. This energy rating is
then normalised such that the sum of the energy for all bars is equal to the
average number of arrows for that difficulty level. Thus this new rating for each
bar gives the number of arrows that should be placed for that bar.

To ensure that quiet sections of music get some arrows, and loud sections of
music are not overwhelmed with arrows, the ratings are adjusted. For runs of bars
with no arrows, it is ensured that an arrow is placed at least every third bar. For
runs of bars with eight arrows, and thus no gaps between arrows, it is ensured that
there is a gap in the arrows at least every third bar.

6.5.3 Difficulty Levels
The arrow placement algorithm above does a good job of ensuring that the step
tracks produced are of the correct difficulty. By assigning the number of arrows
globally, it is insured that arrows are well spaced on easy difficulty levels, and
clumping of arrows, which would make a step track more difficult than it should
be, is avoided.

This is not the whole picture with respect to difficulty of step tracks. There are
unwritten rules that state the types and complexity of arrows that can be used for
each foot rating. These include avoiding corner jumps, and ensuring that no other
arrows are placed while freeze arrows are being held, for easy difficulty songs.
Other rules govern the number of off beat arrows that can be placed for each foot
rating.

These extra rules are taken care of by conditions on the use of heuristics and
rules. These conditions are relatively trivial in the implementation and thus are
not detailed here.

6.5.4 Giving a Step File Structure
In DDR step files have a structure. Repeating patterns can be noticed as
individual parts of a song repeat. These can be noticed sub consciously while
dancing to the step track. Recognition of these repeating patterns gives an air of
quality to the step track.

The music analysis grouping of the song into similar bars allows this type of
structure to be added to the auto generated step files. For each group the average
of all its energy levels is taken, and the average number of arrows per bar in the
group is calculated. Using this information, and the rules of flow given above, a
bar length pattern of arrows is generated for that group.
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This pattern is then applied to all bars in the group. When a consecutive run of
bars in the same group is found, variation is added to the pattern to avoid very
boring step tracks being generated. This variation consists solely of swapping
either the up/down arrows in the pattern, or the left/right arrows in the pattern, or
both. This simple technique for variation ensures that the patterns are still
immediately recognisable, while altering them enough to be interesting.

To further improve the quality of the step track generated, arrows patterns for
groups which contain a large number of bars must contain both up/down and
left/right arrows. This ensures that the patterns the player will spend the majority
of time dancing to will always be interesting.

6.5.5 Pauses and Freeze Arrows
Placing pauses in the arrow stream is very simple. As pauses can occur at every
difficulty level, it is simply a case of annotating the step track with the location
and times of each pause. There is no further deliberation to decide which pauses
should be included or not, all pauses found are added to the step track. This is a
very naïve strategy but works well in practice. The placement of pauses is
unaffected by the grouping of the song, a pause in one element of a group does
not necessarily mean a pause in all elements of the group.

Placing freeze arrows is a more complex problem. Many official songs in DDR
have freeze arrows as part of their repeating patterns. Unfortunately, due to time
constraints only a simple freeze arrow placement scheme was implemented. The
freeze arrows are simply overlaid onto the existing arrow pattern for the song, and
on easier difficulty levels any arrows present at the same time as a freeze are
removed. This simple strategy works, but fails to take into account repeating
patterns and the flow of arrows.

6.6 Outputting Arrows to a Step File
Once the arrow generation is completed for each of the three difficulty levels
(light, standard, and heavy), the pattern of arrows must be output to a file readable
by either Dance With Intensity or StepMania.

This involves encoding the patterns in various ways depending on the file format
used by the simulator. This encoding is not covered here as it is accomplished by
trivial text processing methods.

The step file produced also contains the BPM and gap value, along with the name
of the song being processed. The step file and song are then copied to either the
Dance With Intensity or StepMania song directory. This signals the end of the
processing, and the song can now be danced to using either DDR simulator.



40

7 Testing
This section covers tests performed during construction of the various algorithms
used in this project. These include tests to determine the optimum value of
parameters, along with tests of the applicability of the algorithms.

7.1 Parameter Evaluation
This section covers the tests performed to choose the best values for parameters
of the music analysis algorithms.

7.1.1 Lowpass Filter Type
When smoothing the waveform for peak picking, there are many different types
of low pass filters you can use. To find the most suitable one, three of the best
filters were tried with a range of songs. The results are shown below.

Eminem -
Lose
Yourself

Foo
Figheters -
Monkey
Wrench

Daft Punk -
Aerodynamic

Linkin Park
- One Step
Closer

The Prodigy
- Voodoo
People

Butterworth BPM 171.45079 174.14769 122.86975 190.16818 148.99488

Gap In
Seconds

0.23605 0.11059 0.39644 0.04769 0.23857

Time
Taken 40.141 61.984 50.282 52.25 40.485

Elliptic BPM 171.45079 174.15915 189.63664 190.16818 148.99488

Gap In
Seconds

0.23599 0.28726 0.30469 0.0478 0.24063

Time
Taken

44.625 64.578 62.078 54.844 44.735

Chebyshev BPM 171.45079 174.14769 176.76531 142.62613 148.99488

Gap In
Seconds

0.23678 0.1111 0.18943 0.36288 0.23873

Time
Taken

39.578 59.344 63.484 53.657 38.735

For three of the five songs (Lose Yourself, Monkey Wrench, and Voodoo People)
the choice of filter made no difference. For Aerodynamic only the Butterworth
filter gave the correct BPM, and for One Step Closer the Chebyshev filter gave
the incorrect BPM.

Therefore it was decided to use the Butterworth filter in the final implementation
as it seems to provide better results. This may be because Butterworth filters
generally have a much sharper cut-off and thus less high frequency noise is
present in the smoothed waveform.
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The data set of only five songs does not definitively show that a Butterworth filter
is the best, but it has consistently performed well in day to day usage of the
project.

7.1.2 Lowpass Frequency Threshold
The smoothness of the waveform generated by the lowpass filter is based on the
frequency cut-off, specified in Hz. A range of different cut-off values were tested
with five different songs.

The
Prodigy -
Firestarter

Holly
Valance -
Kiss Kiss

Sho-t feat
Brenda -
Groove
2001

The Faint
- Agenda
Suicide

Spiller -
Groovjet

1Hz BPM 141.46707 194.03095 122.534 71.9941 130.011

Gap In
Seconds

0.01259 0.15018 0.13222 0.00045 0.264

Time
Taken

32.297 23.891 22.516 40.437 38.281

5Hz BPM 70.74488 193.98827 175 72.2872 130.0054

Gap In
Seconds 0.43791 0.29537 0.2698 0.25735 0.2641

Time
Taken

33.937 27.781 27.297 43.609 42.953

10Hz BPM 141.48976 194.00259 140 144.5586 130.0054

Gap In
Seconds

0.01428 0.14476 0.1018 0.25957 0.2625

Time
Taken

38.86 28.672 30.5 50.171 48.375

15Hz BPM 141.48976 145.48054 140 144.59016 130.0054

Gap In
Seconds

0.01476 0.08601 0.10172 0.26959 0.26336

Time
Taken

44.5 33.171 31 60.031 53.016

20Hz BPM 106.1159 96.99769 140 144.5349 130.005

Gap In
Seconds

0.439 0.29617 0.1035 0.25637 0.2644

Time
Taken

56.75 39.11 35.875 72.094 61.359

40Hz BPM 141.48219 145.49654 140.007 72.2015 130.005

Gap In
Seconds

0.01317 0.08782 21.7329 0.25308 0.2656

Time
Taken

104.985 82.25 76.031 199.735 100.579

The only cut-off that consistently provided the correct BPM for all songs was the
10Hz cut-off. Thus, this is the cut-off used in the final implementation.
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7.1.3 Peak Threshold
Once the waveform has been smoothed, the peaks are extracted. In order to
reduce the amount of processing, only peaks above a certain amplitude are
extracted.

In order to determine this amplitude threshold, five songs were tested with
varying thresholds.

Tatu - All
the Things
She Said

Matrix:
Reloaded
Soundtrack
- Mona
Lisa

Nirvana -
Smells like
Teen Spirit

Goldfinger -
Superman

Papa Rouch
- Last Resort

99% BPM 180.0122 136.88 173.679 167.978 90.52

Confidence 7.625 12.041 6.387 4.686 6.38

Time Taken 27.89 21.765 25.734 26.375 38.062

95% BPM 179.987 136.971 115.875 194.888 181.196

Confidence 11.615 20.268 13.3 9.99 10.581

Time Taken 31.156 25.829 33 33.984 43.594

90% BPM 180.0122 136.971 115.733 194.874 181.171

Confidence 13.822 24.419 13.426 17.79 16.666

Time Taken 37.407 32.125 43.5 52 49.156

1% BPM 180.012 136.971 115.73 194.874 181.196

Confidence 42.533 60.739 13.426 57.25 32.826

Time Taken 129.656 171.297 145.36 151.844 153.328

The results above show that with a threshold as high a 95%, the correct BPM is
still extracted. At 99%, errors in BPM calculation begin to appear. The lower the
threshold, the greater the confidence in the BPM calculations.

In the final implementation, the threshold is set at 90%. This gives a nice balance
between confidence and execution time.

7.1.4 Bar Start Discriminator
When dividing the song into bars, the beat on which each bar starts must be
found. This is done by comparing self similarity graphs of each possible
configuration of bar start positions, including having bars start on an offbeat.

Then some measure of the fitness of each bar starting position is made, and the
fittest is taken as the correct bar start position. If this falls on an offbeat, the beat
which follows it is taken as the bar starting beat.

Three measures of fitness were tested with five different songs.
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The first measure is the simply the variance of the values in the self-similarity
matrix. The second measure is the average difference between the values of
neighbouring pixels. The third measure is the variance of the differences of
between neighbouring pixels.

All songs in the test were normalised such that the first beat starts a bar.

Move Your
Feet

4 Ton Mantis
Afronova
Primeval

Du Hast
Trip Machine
Climax

Variance 0.013583238 0.024740338 0.014869877 0.015521936 0.009694622

0.012447388 0.023243195 0.013620707 0.014978109 0.008617234

0.012036733 0.022020121 0.013532147 0.014315723 0.008557323

0.011702179 0.020068664 0.013350973 0.012979477 0.008667265

0.011673491 0.019739749 0.013461003 0.013207228 0.009201143

0.011693185 0.020949605 0.013953608 0.013262063 0.009065784

0.01212741 0.022811938 0.014449666 0.013865416 0.008802133

0.012781102 0.022992956 0.014995169 0.016134458 0.009091324

0.064406974 0.07917991 0.048331542 0.063388439 0.063101395Mean of
Absolute
Diff 0.060863599 0.076610093 0.042611761 0.061296777 0.058038202

0.058144729 0.075458077 0.04232522 0.05834401 0.056746315

0.053302514 0.066139713 0.041645215 0.05513148 0.059128004

0.051427501 0.06522833 0.041771115 0.055593812 0.061687476

0.048021686 0.069918 0.043931159 0.054772795 0.061438207

0.047918943 0.074257622 0.044883676 0.056494581 0.059998968

0.051542197 0.075443586 0.047810567 0.062807772 0.061330292

0.003347478 0.007777727 0.003271583 0.006325854 0.003338439

0.002582028 0.006509342 0.002432732 0.005647775 0.002466287

Variance
of
Absolute
Diff 0.002235001 0.005207882 0.002466394 0.004874416 0.00245108

0.002059288 0.003875608 0.002320258 0.00331446 0.002515684

0.00198112 0.003686763 0.002361791 0.003172086 0.002773353

0.001990746 0.004799728 0.003067769 0.003155723 0.002659963

0.002006388 0.00660194 0.003543635 0.003423935 0.002382024

0.002153141 0.00670415 0.003782109 0.005996017 0.002925888

All three of the fitness functions gave the correct results (in bold) in all five of the
tested songs. Although the mean of the differences was the only one which did so
without, in some cases, picking an offbeat.

The final implementation thus uses the mean of differences fitness function. This
was found to provide a reliable estimate of the bar starting position in most songs
encountered.
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7.1.5 Size of Window for Gap Value Fitness Function
When determining the best BPM and gap value, the fitness function computes the
fitness of each gap value based on the number of computed gap values found in a
surrounding window.

The optimum size for this window was tested using five songs. For each song
window sizes from 5 to 8000 samples were used. One sample is usually 1/44100th

of a second.

Window
Size in
Samples

German
Eurovision

Holly Valance
- Kiss Kiss

Marilyn
Manson -
Rock Is Dead

Euromix -
Dead End

Four
Seasons
(Techno
Remix)

5 BPM 72.5488 96.99769 67.41401 131.26953 134.5059

Gap in Seconds 2.22202 1.5307 0.81669 1.33574 0.15651

50 BPM 72.5488 96.99769 134.88301 95.01239 141.98326

Gap in Seconds 2.22025 1.53073 0.84213 0.053832 0.25252

100 BPM 145.09761 96.99769 134.88301 190.00431 141.98326

Gap in Seconds 0.56558 1.53073 0.84617 0.05283 0.25252

500 BPM 145.09761 193.98827 134.88301 190.00431 142.01374

Gap in Seconds 0.56401 0.44893 0.84705 0.05283 0.26286

1000 BPM 145.09761 194.00259 134.88301 190.00431 141.9985

Gap in Seconds 0.56247 0.454036 0.84757 0.05283 0.25624

2000 BPM 145.09761 194.01672 134.88989 190.00431 141.98326

Gap in Seconds 0.56257 0.455737 0.84782 0.05283 0.25583

4000 BPM 145.08965 145.45654 134.89676 95.02262 70.96117

Gap in Seconds 0.55857 0.46678 0.84916 0.06243 0.23651

8000 BPM 145.07374 145.45654 134.89676 95.05335 182.05587

Gap in Seconds 0.5544 0.46678 0.84401 0.06458 0.25918

500 to 2000 Samples gave the correct results for all songs tested. Above and
below these values errors started to appear.

For results where the BPM is correct, the same (or close enough) gap value is
always found. This seems to suggest that the window used for deciding when
gaps are similar is not of great importance beyond ensuring the correct BPM is
found.

In the final implementation 1000 samples is the window size used. This should
ensure the most accurate determination of BPM and gap value.
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7.1.6 Threshold for Locating Exact Onsets
To find beats, peaks are picked from a smoothed representation of the waveform.
But these peaks do not correspond exactly to the onset of the beat. The onset is
the first occurrence of a high amplitude element in the waveform, and due to
smoothing the peak never equates to this element.

In the smoothed waveform a trough, signalling the point in time before the beat
occurs, precedes every peak. The correct onset will always be somewhere
between the trough and its associated peak.

A section of the original waveform, from the location of each trough to each
peak, can be examined to find the actual onset of the beat. This is considered to
be the first sample in the section of the original waveform which is above some
threshold.

The best value for this threshold was determined qualitatively. A range of songs
were tried at different thresholds in order to find one which threshold would
position the beats correctly for most songs. The results of each test were
examined by hand using the StepMania simulator.

The threshold value was tweaked as new songs were tested. In the final
implementation, the sample must be 70% of the height of the peak in the original
waveform to be considered the onset.

Peak
Extracted

Trough
Extracted

Actual onset
position

Figure 21 - Diagram showing the relation ship of the onset positions to
the extracted troughs and peaks.
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Rather than find the onset for every beat separately, it was found that better
results were obtained for BPM and gap value, if all onsets were considered to be
the same distance from the peak they precede. This distance is determined by
averaging the distance from of each peak from its detected onset.

7.2 Applicability of Algorithms
This section covers the tests performed to ascertain the applicability of certain
algorithms being used.

7.2.1 Theoretical Worst Clique Finding Performance
The maximal clique finding algorithm used is that devised by Bron and Kerbosch.
The implementation used had only previously been tested with graph sizes of up
to 50 nodes. In this project the graph size varies between 50 to 120 nodes,
depending on the BPM and length of the song.

It is important to test the applicability of the algorithm, as there are cases which
could theoretically occur that are computationally infeasible. These cases will
occur if the graph is too connected, or has too many nodes. High connectedness
will occur in a song that is very similar all the way through.

120 nodes (each node corresponds to a bar) is the maximum that can occur, based
on a song having the maximum BPM and being of maximal length. The test
measured the performance of the algorithm on graphs of 50 to 120 nodes, with
50% to 90% of the nodes connected.

Number of
Nodes

Connectedness of Graph

50% 60% 70% 80% 90%

50 0.125 0.391 1.265 4.328 15.422

60 0.562 0.953 2.734 17.063 80.625

70 0.938 1.906 7.75 70.172 -

80 1.546 3.641 17.328 202.453 -

90 2.375 7.219 57.062 - -

100 3.813 12.516 106.015 - -

110 5.359 21.719 - - -

120 8.281 35.984 - - -

The dashes in the above table indicate tests which did not finish within a
reasonable time (5 minutes), or which ran out of memory.

The results show that there are cases that can occur, which are computationally
intractable. Therefore, graphs which are intractable are detected before
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computation begins, and when found cause the application to terminate
gracefully.

7.2.2 Typical Clique Finding Performance
This test measures the real world performance of the maximal clique algorithm on
a selection of five songs.

Junior Senior -
Move Your
Feet

Offspring -
Living in
Chaos

Scotty B -
Drop The
Bomb SF

Placebo -
Taste in
Men

A -
Starbucks

Euromix 2 -
Living in
America

Connectedness 28.48% 7.92% 43.69% 28.51% 24.23% 57.94%

Number of Nodes 50 86 56 88 64 60

Time Taken 0.015 0.016 0.0309 0.094 0.469 0.032

The time taken to find all the maximal cliques in the tested songs is close enough
to zero to be considered negligible. The Algorithm performs very well in practice,
even though it is worst case performance can be very bad. This is mainly due to
the low connectedness of the graphs created by this project.

Therefore it is unlikely that the application will ever be required to terminate due
to an intractable graph.
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7.2.3 The Best Representation of a Beat
In order to decide the best algorithm for computing the representation a beat,
three different candidate methods were tested, and the quality of the self-
similarity matrices they produced was were evaluated. The first candidate is the
energy of each beat, calculated by taking the average of the square of each
sample. The second candidate is the Mel Frequency Cepstral Coefficients
(MFCC) vector for each beat. Finally, the last candidate is the Fourier transform
of each beat, grouped into a discrete number of bins.

Five songs were tested with each candidate representation, and the resulting self-
similarity matrices compared by hand. The best representation is the one
providing the clearest visible division of each piece of music. In practice this
turns out to be the energy representation. The MFCC representation consistently
performs the worst, and generates uniform grey self-similarity matrices for songs
that have clear divisions in structure. The Fourier transform and energy
representations both generate clear similarity matrices, but the energy
representation was chosen because it is faster to compute, and in practice it
produced better grouping results.

Figure 21 - The image on the left is the self-similarity matrix as generated by MFCC. The
image on the right is that generated by the energy representation. It can be clearly seen that
the energy representation provides a clear structuring to the song, where the MFCC
representation fails to do so.
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8 Evaluation
This section gives a critical evaluation of the finished project. It is divided into
two parts, the first gives a quantitative evaluation of the BPM and gap value
algorithm, and the second part gives a qualitative evaluation of all sections of the
project.

8.1 Quantitative
8.1.1 BPM and Gap Value Test with ‘Official’ DDR Songs

In order to evaluate the quality of the BPM and gap value algorithm, two tests
were used. In the first of these all the applicable songs from the Euromix 2 DDR
arcade machine were used as inputs to the application, and the calculated BPMs
and gap values were recorded. Applicable songs are those that do not change
BPM part way through, and whose BPM is within the limits of the system (90 to
200 BPM).

The songs from the arcade do not have official step files detailing their BPM and
gap values, but fans have recreated the step files by hand. In the tests these are
used as the ‘official’ BPM and gap values, although due to being determined by
hand they may still contain errors.

The Computed and ‘official’ BPMs are compared by simply taking the difference
between the values for each song.

Song Name ‘Official' BPM Computed BPM Diff in BPM

Afronova Primeval 200 200 0

B4U 155.05 155.0905574 0.040557412

B4U - Oni Remix 170 169.974947 0.025052997

Burnin' the Floor 155.05 155.0632911 0.013291139

Candy 192.01 192.0034831 0.006516944

Can't Stop Falling In Love 155 155.0087873 0.008787346

Can't Stop Falling In Love -
Speed Remix

170 169.9967877 0.003212335

D2R 160 159.9951627 0.004837344

Destiny 155 155.0087873 0.008787346

DXY! 148 148.0031323 0.003132341

Electro Tuned 125.08 125.0354409 0.044559115

Exotic Ethnic 190 189.9906656 0.009334386

Groove 2001 140 140 0

Higher 132.06 132.0820646 0.022064593

Hypnotic Crisis 134.97 135.0068881 0.036888107

Hysteria - Oni Remix 190.1 190.1271826 0.027182582

Let the Beat Hit 'Em 110 110.0162155 0.016215542
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Living in America 168.98 169.0194826 0.039482593

Look to the Sky 140 140.0074078 0.007407799

My Summer Love 100.05 100.0794281 0.029428118

Never Ending Story 140 140 0

Never Gonna Make 136 135.9921879 0.007812098

Never Let You Down 125 125 0

Nori Nori Nori 160.3 160.3053435 0.005343511

Rain of Sorrow - Ballad 4 U 139.99 140 0.01

Secret Rendez-Vous 98 196 98

So Deep 139.97 140.0074078 0.037407799

Spin the Disc 130 129.9990174 0.000982608

Test My Best 147 147 0

The Centre of the Heart 128 128.0054182 0.005418219

Trip Machine Climax 180 180.0367422 0.036742192

WWW.Blonde Girl 170 169.9858666 0.014133368

The only song for which the incorrect BPM is calculated is Secret Rendez-Vous.
In this case the application computed the BPM to be twice as fast as the actual
BPM. Mistaking BPMs as being twice as fast, or half as fast as they actually are
is a common problem, and one that plagues humans as much as computers.

The biggest difference otherwise is 0.045… of a second, for Electro Tuned. This
is a small enough difference to be unnoticeable. Therefore the BPM algorithm can
be considered very successful, with 31 out of 32 correct (96.9%).

The gap values in the ‘official’ step files, are given in 1000ths of a second. In
order to compare them to the gap values generated by the program (which are in
seconds), both must be normalised.

Both are normalised to the smallest possible gap value in seconds. This is simply
the remainder of the gap value after dividing by the interval size of the BPM for
that song.

Song Name
‘Official’
Gap value

Computed
Gap Value

Normalised
‘official’
gap value

Normalised
computed
gap value

Difference
in
normalised
values

Afronova Primeval -1105 0.050839002 0.095 0.050839 0.044161

B4U 25 0.434829932 0.025 0.047959 0.022959

B4U - Oni Remix 685 1.0438322 0.332059 0.337846 0.005787

Burnin' the Floor 25 0.04170068 0.025 0.041701 0.016701

Candy -1110 1.340997732 0.139935 0.09102 0.048914

Can't Stop Falling In
Love

15 0.434716553 0.015 0.047642 0.032642



51

Can't Stop Falling In
Love - Speed Remix

-1335 1.427210884 0.076765 0.01542 0.061345

D2R 370 0.393560091 0.37 0.018549 0.351451

Destiny 155 1.723945578 0.155 0.175646 0.020646

DXY! 100 1.74537415 0.1 0.123787 0.023787

Electro Tuned 255 0.468095238 0.255 0.468095 0.213095

Exotic Ethnic 5 0.027777778 0.005 0.027778 0.022778

Groove 2001 -1355 0.530362812 0.359286 0.101791 0.257494

Higher 20 1.861609977 0.02 0.044558 0.024558

Hypnotic Crisis 20 0.492743764 0.02 0.048322 0.028322

Hysteria - Oni Remix -230 0.355578231 0.085623 0.04 0.045623

Let the Beat Hit 'Em 0 2.212063492 0 0.030567 0.030567

Living in America 20 0.398752834 0.02 0.043764 0.023764

Look to the Sky -1260 0.841950113 0.025714 0.413401 0.387687

My Summer Love 20 1.236507937 0.02 0.03746 0.01746

Never Ending Story -1640 0.038072562 0.074286 0.038073 0.036213

Never Gonna Make 55 0.946281179 0.055 0.063878 0.008878

Never Let You Down 325 1.778231293 0.325 0.338231 0.013231

Nori Nori Nori 30 0.798752834 0.03 0.050181 0.020181

Rain of Sorrow - Ballad
4 U

20 1.769750567 0.02 0.055465 0.035465

Secret Rendez-Vous 25 0.353945578 0.025 0.047823 0.022823

So Deep 20 0.485419501 0.02 0.056871 0.036871

Spin the Disc 950 0.501179138 0.026923 0.039637 0.012714

Test My Best 25 0.044421769 0.025 0.044422 0.019422

The Centre of the Heart -1760 0.075986395 0.115 0.075986 0.039014

Trip Machine Climax 20 1.408231293 0.02 0.07517 0.05517

WWW.Blonde Girl 40 0.418185941 0.04 0.065215 0.025215

For the gap value calculations, there are only four songs for which the normalised
gap values differ significantly. Two of these, Electro Tuned and Groove 2001,
have been calculated incorrectly. The others, D2R and Look to the Sky, have
been calculated correctly, the large difference is only an artefact of the
normalisation process due to the gap value being very close to the interval length.

With 30 out of the 32 (93.8%) of the gap values computed correctly, the
algorithm has proved to be very strong.

8.1.2 BPM and Gap Value Test with Non-DDR Songs
In order to test the real world applicability of the BPM and gap value algorithm,
the application was tested with 25 well known songs, which have never been used
before in DDR.
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The songs chosen were considered to be good candidates for use in DDR.
Therefore the test cannot be taken as proof of the power of the algorithm wih
arbitrary music.

Without any ‘official’ BPM or gap values to compare with, an alternative rating
strategy is used. Each song is run through the application, and its resulting step
file is loaded into StepMania. An expert DDR player than danced to the arrow
patterns produced by the application. If the arrows were consistently on time with
the beats then BPM and gap algorithm was considered to work.

Song Name Computed BPM
Computed gap
value

Successful

The Faint - Agenda Suicide 144.5585664 0.259569161 Yes

Melanie C - I Turn to You 137.9705913 2.163356009 Yes

The Prodigy - No Good 145.002192 0.83446712 Yes

Pennywise - My Own Country 141.1953042 0.672222222 Yes

Nirvana - Smells Like Teen Spirit 115.7328435 0.916077098 Yes

BT - The Hip Hop Phenomenon 130.0437411 1.35260771 Yes

The Prodigy – Speedway 144.0313538 0.705328798 Yes

The Prodigy – Firestarter 141.4897599 0.438344671 Yes

Mclusky - Lightsaber Cocksucking Blues 137.8555799 0.848571429 No

A – Starbucks 150.0935958 0.020385488 Yes

Bomb the Bass - Bug Powder Dust 196.349065 0.681111111 Yes

Liam Lynch - United States of Whatever 149.2638348 1.122743764 No

Puretone - Addicted to Bass 164.9934526 0.67893424 No

Eminem - Without Me 112.2756397 1.479750567 Yes

The Cardigans - Erase Rewind 103.7118332 0.317006803 Yes

Girls Aloud - Sound of the Underground 163.9709983 0.328684807 No

Nickleback - This is How you Remind Me 171.8516594 0.59707483 Yes

Avril Lavigne - Sk8ter Boi 150.0156266 1.135791667 Yes

Holly Valance - Kiss Kiss 194.0024929 0.454036281 Yes

Avril Lavigne – Complicated 155.986559 0.690430839 Yes

Tatu - All the Things She Said 180.0122457 0.255510204 Yes

Infinity - Sunshine (When I Dance With
You)

133.1655762 0.948367347 Yes

Red Hot Chili Peppers - By the Way 126.742348 1.419047619 No

Kylie Minogue - Spinning Around 120.0163288 0.722630385 Yes

Rammstein - Links 2 3 4 130.1076855 0.47952381 Yes

The program failed to find the correct BPM for five of the songs. In no cases did
it incorrectly determine the gap value
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Two of the songs it failed to find a correct BPM for, United States of Whatever
and Lightsaber Cocksucking Blues, do not have a machine processed beat. Thus
the drumming in each song wavers, produces inconsistent beat positions.
Therefore there is not single BPM to be extracted and the program cannot be
expected to find one.

Therefore the BPM and gap value algorithms are still very successful on real
world songs. With an 80% success rate, the application is robust enough for
public release.

8.2 Qualitative Evaluation
8.2.1 Placement of Pauses

The final implementation is very proficient at finding pauses where they exist;
unfortunately it also tends to find pauses in places where they do not exist.

When the algorithm does find a correct pause, the effect is very noticeable and
adds immensely to the feeling of an interesting and well-designed arrow pattern.

The extraneous pauses found by the implementation tend to suffer the problem
that they have no defined start and end. They tend to occur in the middle of quiet
sections of music. Therefore the player has not idea when to expect the arrows to
start moving again. The whole effect seems rather arbitrary and nonsensical.

Fortunately these phantom pauses do not occur frequently and do not detract
greatly from the overall arrow pattern.

8.2.2 Placement of Freeze Arrows
Due to time constraints near the end of the project, the algorithms used for finding
and placing freeze arrows are both very simplistic. Even so, they successfully
detect candidate positions for freeze arrows, and integrate these freezes into the
existing arrow streams with little overall disruption.

The existence of these freeze arrows adds to the feeling of a well designed step
track, as most new DDR songs contain some freeze arrows. Unfortunately there
are some drawbacks to the simple methods used. The algorithm for detecting
possible freeze positions does not allow for overlapping freezes, although these
do occur in official DDR songs.

The main flaw is with the placement strategy; at present it does not attempt to
take into account any of the rules for arrow flow. This means it is frequently the
case (on higher difficulty levels) that freeze arrows are awkward to step on, and
the arrows alongside the freeze cannot sensibly be followed. This problem, when
it occurs, tends to make the step tracks look very amateurish.

Overall it is felt that, even with the drawbacks, the presence of the freeze arrows
improves the quality of the generated step tracks.
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8.2.3 ‘Flow’ of Arrows
Due to the rules determining which arrows can be placed depending on the
position of the player’s feet, the final implementation is able to ensure that the
arrows in the project flow in a natural manner.

Without any repeating sections, this flow is continuous throughout the whole
song. Unfortunately, by grouping bars and thus introducing repeating sections this
flow is broken. This is due to the generation of patterns for each group without
knowing their positions in the song. Therefore it is not possible to track feet
positions between bars.

This introduces breaks in the flow between bars of the song. This is usually only
noticeable on harder difficulty levels, which have a greater density of arrows.

The broken flow turns out not to be a major problem. Due to the random nature of
the arrow placement, and the fact that there are only four possible arrows, it turns
out that in many cases there is no noticeable break in flow. Even in official songs
there is almost never a continuous uninterrupted flow anyway. It is OK to have
places in the song which require a nimble swapping of feet.

8.2.4 Grouping and Repeated Sections
The success of grouping, and thus repeating sections, was evaluated by watching
arrow patterns along with the music and assessing whether the repeating patterns
were really occurring on repeating sections of music. This assessment is very
subjective, but is easy to perform, and gives a measure of the success of the
grouping as perceived when the resulting step track is in use.

It was found that the grouping, while not optimal due to the use of a greedy
algorithm for choosing the groups, works exceedingly well in practice. For every
song tested it was found that the arrows repeated in ways which a human listener
would agree with. Bars of music which did repeat, but didn’t have a repeating
pattern arrow were not easily noticeable and so did not deter from the overall
grouping effect.

8.2.5 Overall Evaluation
This section of the evaluation compares the performance of the project in relation
to the state of the art.

The algorithm for extracting the BPM is very reliable and provides more accurate
results than any existing system. Most state of the art BPM calculation algorithms
have an error of 1% or greater in their results. The largest percentage error
generated by the algorithm used in this project (discounting the case where
double the BPM was extracted) is 0.037%. No existing system is even close to
this kind of accuracy.

The algorithm is not perfect though; it is heavily constrained by the assumptions
made about the input music. Its performance on a musical piece lacking a
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prominent bass line is likely to be poor. Its usefulness is also reduced somewhat
by its non real-time nature, as much music analysis is performed in real time.

Finding the positions of the beats in the song accurately, as accomplished by
extracting the BPM and gap value for a song, fills a small gap in current music
analysis research. The algorithm developed by this project can provide, with
extreme accuracy, the position of every beat in a piece of music.

Unfortunately this is not quite as impressive as it sounds. The assumption made,
that the music analysed must have a strictly accurate beat severely reduces the
usefulness of this algorithm in other systems. The algorithm is unable to predict
the beat positions correctly for songs in which the BPM varies even slightly. This
is not a problem for DDR, but in other systems is likely to be limiting.

The quality of the step tracks generated by the project are very high. In many
ways they have the hallmarks and quality of the official step tracks. The system
can reliably generate an interesting step track for every song, with some, of
course, being better than others.

The main drawback of the system is the lack of originality in the step tracks
generated. After experiencing a large number step tracks generated by this
system, it is easy to spot that they all follow a similar theme. This is due to the
same rules and heuristics being applied to every song; every step track ends up
having the same feel.

Official step tracks break some rules, and provide interesting and unique features,
due to their human creators not being bound by strict rules. Nonetheless the step
tracks produced by this system are of a high enough quality that players are
willing to return to the tracks to try and master them. In the fickle world of
gaming this is the best compliment that can be hoped for.

The most promising aspect of this project is the development of an algorithm for
grouping the music into repeated sections. The algorithm developed here can
successfully construct a structural representation of any piece of polyphonic
music (provided the music conforms to the assumptions made by this project).
There is very little existing literature on this problem. The only research that
touches upon this idea is An Automated Structural Analysis of Music [16] , but
this has only been tested with three songs so far, and was unsuccessful at
structuring one of these.

The grouping algorithm developed for this project, on the other hand, has been
demonstrated to work with a large number of sample songs. It reliably divides the
songs into a reasonable structure, which human listeners are happy with. It does
not attempt to find the ‘correct’ structure of the music (if the music even has a
correct structure), nor does it try and be 100% reliable in finding all structural
elements. Under close scrutiny it can be seen that many of the groups made by the
algorithm are non-optimal.

Nevertheless, the structuring extracted by the algorithm is consistently of a high
quality. It has the potential to be useful in many areas other than DDR, for
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example providing structure to a light show based on music. The high reliability
of the results means the algorithm is not just confined to music analysis research,
but can easily be used in real world applications (as demonstrated by this project).

Finally, the finished application is of a high enough quality to be released
publicly. The system performs reliably with most inputs, and degrades gracefully
when unable to process the music.
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9 Conclusion
9.1 Key Points

The project achieved all but one of the goals set in the specification (see appendix
for the full specification). The only goal that was not achieved was the extraction
of song information from ID3 tags. This is an unimportant feature, and has no real
impact on the quality of the project.

The project has also demonstrated that state of the art in music analysis can
reliably and efficiently be used in real world systems. The quality of the BPM and
gap value algorithm shows that music analysis systems are not just the domain of
research.

Many disparate areas of music analysis research have also been combined
successfully. The integration of beat positioning, through BPM and gap value
calculations, with music structuring, through self-similarity and clique finding,
shows there is great benefits to be had with a combined approach to music
analysis. Much research develops independent systems to perform specific tasks;
the ability to share information between these tasks can improve the efficiency of
all tasks involved.

The grouping algorithm that was developed has the potential to be useful in many
other areas. Its reliability and results are way ahead of current systems.

This project also demonstrated the emerging creative power of computers. The
ability of the project to create unique and interesting arrow patterns for each song
shows that computers are now powerful enough to start producing their own
creative works. Conversely the lack of originality, and the similarities that can be
seen in all the computer generated step tracks, points out the striking limitations
of the computers creativity.

Tying all of this together is the fact that the project has produced a fully
functional piece of software, in a state where it can be released for public use.

9.2 Further work
Many interesting areas of further work are discussed in the extensions portion of
the specification (see appendix). These points will not be covered here; instead
opportunities for further work that have arisen from construction of the system
are explored.

The most obvious area to be improved is the arrow generation, in order to give
the computer more creative power. A system whereby rules and heuristics can be
ignored in part would give the system the power to create unexpected and original
works.

Alternatively, the use of a neural network for generating the step tracks could still
be explored. Using a neural network should avoid accidental bias, which can
occur when human knowledge is encoded as heuristics.
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Further improvements to the feature extraction routines, could alleviate the
similarity in step tracks. This could include extracting features such as vocal
segments in a piece of music, or using an MFCC like representation of beats that
can express more varied qualities of the music.

One extension proposed in the specification that is worth mentioning here, is the
ability to process songs with variable BPM. This can include the case of a human
drummer who will have inconsistent timings between beats, and the case of music
that has sharp changes in speed.

This will require an overhaul of the current BPM algorithm, while still retaining
its accuracy. Any misjudgements of the system with regard to the location of the
speed changes will likely render the resulting step file unusable. Thus, this is a
very difficult extension to implement, but which would remove the most
restrictive assumptions made by the project.

Overall the project can be considered a great success, achieving all its goals, and
contributing new and valuable work to the field of music analysis.



59

10 Bibliography
[1]  DDR Freak website, http://www.ddrfreak.com/
[2]  Dance With Intensity, http://dwi.ddrei.com/
[3]  StepMania, http://www.stepmania.com/stepmania/
[4]  Ogg Vorbis format, http://www.xiph.org/ogg/vorbis/
[5]  Mp3 format, http://www.iis.fraunhofer.de/amm/techinf/layer3/
[6]  dwi file format, http://dwi.ddrei.com/readme.html#4
[7]  sm file format, Section 13 of http://www.stepmania.com/stepmania/readme.php
[8]  bms file format, http://www.sun-inet.or.jp/~yaneurao/bm98/bmsformat.html
[9]  DSP Guru website, http://www.dspguru.com/info/tutor/index.htm
[10]  Tempo and Beat Analysis of Acoustic Musical Signals, Eric D. Scheirer, 1998,

J. Acoust. Soc. Am. 103:1 (Jan 1998), pp 588-601,
http://web.media.mit.edu/~eds/beat.pdf

[11]  Beat Extraction from Digital Music, Will Archer Arentz,
http://ilab0.ux.his.no/norsig/finalPapers/44.Beat_Extract_31820017132.ps

[12]  The Beat Spectrum: A New Approach to Rhythm Analysis – Foote, Uchihashi,
http://www.fxpal.com/people/foote/papers/icme2001.pdf

[13]  Locating Singing Voice Segments within Music Signals, Berenzweig and Ellis,
2001, http://www.ee.columbia.edu/~dpwe/pubs/waspaa01-singing.pdf

[14]  Foote, J., “Visualizing Music and Audio using Self-Similarity”, in Proc. ACM
Multimedia 99, Orlando, FL, pp. 70-80,
http://www.fxpal.com/PapersAndAbstracts/papers/foo99b.pdf

[15]  Riddim: A Rhythm Analysis and Decomposition Tool Based on Independent
Subspace Analysis – Iroro Fred Onome Orife,
http://eamusic.dartmouth.edu/~iroro/thesis/

[16]  Listening to “Naima”: An Automated Structural Analysis of Music from
Recorded Audio - Roger B. Dannenberg,
http://www.cs.cmu.edu/~rbd/papers/icmc02naima.pdf

[17]  Introduction to Hidden Markov Models, University of Leeds,
http://www.scs.leeds.ac.uk/scs-only/teaching-
materials/HiddenMarkovModels/html_dev/main.html

[18]  Project Proposal, Dance Dance Revolution, Lilian Chau and Nick White, MIT,
2002, http://www.mit.edu:8001/people/lec/DDR/ddr_proposal.pdf

[19]  Digital Dancer, SigArch, University of Illinois,
http://www.acm.uiuc.edu/sigarch/projects/dance/

[20]  Audio Analysis using the Discrete Wavelet Transform – Tzanetakis, Essl, Cook,
http://www.cs.princeton.edu/~gessl/papers/amta2001.pdf

[21]  Online Introduction to DSP, Bores, http://www.bores.com/courses/intro/
[22]  C. Bron and J. Kerbosch. Finding all cliques in an undirected graph.

Communications of the ACM, 16:575--577, 1973.
[23]  More information on MATLAB can be found at the MathWorks website,

http://www.mathworks.com/
[24]  LAME Mp3 encoder/decoder, http://lame.sourceforge.net/
[25]  B. Logan, Mel Frequency Cepstral Coefficients for music modelling,

http://ciir.cs.umass.edu/music2000, http://citeseer.nj.nec.com/logan00mel.html



60

11 Appendix
11.1 Introduction to Digital Signal Processing

Music can be represented as a signal of amplitude (strength of the signal, or
volume of the music) changing with time. Amplitude can vary from -1 to 1, with
values further from 0 indicating greater volume.
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Plot of a small section of The National Anthem by Radiohead

Figure 22 - A plot of a sample waveform.  The high frequency elements give this plot its jagged
look, while the low frequency elements give the overall repeating shape.

The frequency of a signal is the number of oscillations, changes in amplitude
from positive to negative to positive again, per second.

Analog signals, such as sounds generated from a guitar, vary continuously with
time. But in order to represent these signals in a computer we have to use a
discrete time scale. To perform digital to analog conversion we sample the music
at given intervals. This means we will miss any changes in amplitude between the
sampling points.

This loss of signal data means that for given sampling rate, say 44100 samples per
second, there is a maximum frequency we can accurately record in our digital
signal. Nyquist worked out that the maximum frequency you can accurately
record is half the sampling rate. In our case, about 22050 Hz, this is about the
highest frequency perceivable by the human ear.

Sometimes the oscillating nature of the signal can be difficult to deal with. It can
sometimes be more appropriate to deal with the amplitude of a signal on a purely
positive scale. A simple process called rectification can be used to convert a
signal to this form. Rectification is just the process of taking the absolute value of
every sample.



61

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Time (in samples)

A
m
p
l
i
t
u
d
e

Rectified Waveform

Figure 23 - A simple rectified waveform.

Once we have a digital representation of our signal there are many ways to
analyse and manipulate it. Convolution is a useful, general purpose method of
transforming a signal. It is defined as the weighted moving average of two
signals, one of which has been reversed. What this usually means is that every
sample in a signal is recomputed as a function of its neighbours, the parameters of
the function being the second signal of the convolution process.

Convolution is a very computationally expensive process; every point in the
original signal must be multiplied by every point in the convolution signal.

Convolution is the basis for digital filtering. A digital filter is simply a set of
coefficients which define the amplitude of the convolution signal at each point.
The number of coefficients is termed the order of the filter, so a filter with 6
coefficients is a 6th order filter. Due to the expense of convolution, digital filters
are usually 10th order or lower.

Digital filters have many applications; one of the most basic is low-pass filtering.
This is the process of removing all high frequency components from a signal. In
music, high frequency components constitute the treble, while low frequencies
constitute the bass. A low-pass filter can be used to remove all frequencies above
bass level, leaving you with only the bass line of a song.

Band-pass and high-pass filters are an accompaniment to low-pass filters in
extracting frequencies from a signal. Band-pass filters return you a signal only
containing frequencies between a specified lower and upper bound. High-pass
filters return a signal only containing frequencies above a certain bound.

Another useful signal analysis technique is the Fourier Transform. Jean Baptiste
Fourier showed that any signal or waveform could be constructed by just adding
together a series of sine waves of different frequencies with appropriate amplitude
and phase. A computationally efficient way of determining the amplitude of the
frequency components has been developed and is called a Fast Fourier
Transform.

The result of a FFT is a power spectrum, showing the amount of each frequency
contributing to a waveform. In essence the FFT converts a signal from a
time/amplitude representation to a time/frequency representation. An inverse
Fourier transform can be used to regain the original time/amplitude
representation.
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Figure 24 - The Fast Fourier Transform of the waveform given at the beginning of this section.  It
shows that the waveform has a very large frequency component of just under 100Hz.

Although the FFT is a very powerful tool, it was designed for use with stationary
signals and gives very poor results with non-stationary signals such as music. In
order to overcome this, the Short Term Fourier Transform was invented. It
essentially applies the Fourier transform to small sections, or windows, of the
signal at a time.

Wavelets and the Discrete Wavelet Transform (DWT) provide an even better
alternative to the STFT. More information on the DWT can be found in “Audio
Analysis using the Discrete Wavelet Transform” [20] .

For a more in-depth explanation of the main topics of DSP the reader is
encouraged to look at the free online introduction to DSP from Bores [21] .

11.2 Specification
11.2.1 Overview of the Project

The aim of this project is to automatically generate step files for the PC DDR
clones Dance With Intensity and StepMania. The system will work by accepting
music files from the user, analysing them, and then outputting a step file which
can be used by one of the DDR clones.

The project can be split into two major areas. The music analysis, to extract the
BPM, Gap value and other salient details, and the arrow generation, which uses
the features extracted from the music to generate fun and playable step files.

11.2.2 Core Specification
The system must be able to analyse music in the following file formats: .wav,
.mp3.

The system must be able to accurately extract the BPM value from the music files
to within 0.05 beats per minute. The system must be able to extract the Gap value
correct to within 1 0.05 of a second.

DWI and SM use the BPM value to determine how far apart to space the arrows.
If this spacing is not exactly the same as the spacing between beats in the music,
the differences accumulate as the songs progresses. This means that a very small
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error in the BPM values can equate to arrows that completely fail to line up by the
end of the song.

The system must ensure the BPM is calculated accurately enough such that the
arrows do not drift with respect to the beats in the music. The Gap value must be
accurate enough such that it is possible to obtain perfect ratings on the arrows
through normal play.

The system is only required to deal with music files containing a prominent
distinguishable beat. The BPM in the songs must stay constant throughout. The
system is only expected to deal with music of a similar style to that used in arcade
versions of DDR.

The style of music used in DDR always has a very prominent and simple beat,
usually exaggerated compared to normal music. The average song only last about
two minutes, which is shorter than normal music due to the physical exertion
required. DDR music is mainly dance, techno or pop remixes, but any music with
a loud steady beat can be used.

The system must be able to cope with music that contains quiet sections in which
no beats occur, as well as those with sections in which off beat sounds are very
loud. In these cases the system must still report the BPM and Gap value
accurately.

The system must generate a fun and playable stream of arrows. This is a difficult
metric to qualify. The arrows must be fun in that they are varied and challenging,
but also playable in that it is actually physically possible to dance along to them.

The system must be able to output a step file in the following formats: .dwi, .sm.

When working with tagged music formats such as mp3s [5] , the system must
transfer as much of the tag data as possible from the music file to the step file.
The will usually include the title of the music and the artist performing it.

The user must be able to specify the location to which the step file should be
saved. The system must be able to cope with directory structures of both DWI and
SM when saving the file. The system must also have the option to copy the music
to the same location to ensure the song is playable in DWI and SM without any
other user intervention.

The system must be able to generate multiple difficulty levels per song,
equivalent to the Basic, Trick, Maniac difficulty modes in DDR. Basic patterns
should be between 1 to 6 feet, Trick patterns should be within 3 to 8 feet and
Maniac patterns should be within 6 to 9 feet. The difficulty level in feet for the
Basic mode must be less than the difficulty level of the Trick mode, which in
turn, must be less than the difficulty level of the Maniac mode.

Most songs in DDR follow a similar sort of structure in the way they organise the
patterns of arrows. Usually two or so base patterns, or motifs, of arrows are
repeated, with slight variations throughout the song. One of these usually
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corresponds to the chorus section, and the other the verses. Although, these may
not strictly be choruses and verses in the pop song sense of the words.

The variations in the patterns are usually manifested in the altering of the foot
placement of part of the arrows. For example if the pattern consisted of
alternating left/right arrows, it would be changed to alternating up/down arrows.

Freeze arrows are usually placed where notes are held for a period of time,
making the player keep their feet steady in time with the music. In many cases
while a single freeze arrow is held, other arrows still scroll up the screen. In this
case the player must continue to hit the other steps with their free foot. In order to
really get a feel for how the songs are structured the reader is encouraged to play
DDR.

The different arrow patterns for a single song must all be of the same style such
that the user can tell they are related. Generally each difficulty level should build
upon the arrows of the previous difficulty, keeping the same overall structure.
Small sections can be completely altered but the patterns should just be more
complex versions of patterns in the easier difficulty levels. While attempting to
stick to these guidelines the system must also ensure that all of the difficulty
levels are fun and playable.

In DDR only some patterns of arrows are valid. For instance it is not possible to
have more than two arrows reach the top of the screen at the same time.

Valid arrows are either single arrows or double jumps. Double jumps can consist
of any combination of two arrows. Simple double jumps are the up/down and
left/right pairs. Complex double jumps, or corner jumps, are the combinations of
one vertical arrow with one horizontal arrow.

The timings of the arrows can be on the beat, known as a 1/4 note, because all
DDR music is assumed to be in 4/4 time. Therefore every beat signals a quarter of
a bar. Halfway between the beats, an 1/8 note. Other possibilities that are
infrequently used include 1/12 note and 1/16 note. Other note positions are not
valid.

For each pattern of arrows generated the system must also give the difficulty level
of the pattern, measured in 1 – 9 feet scale of the arcades. The difficulty ratings
assigned to the arrow patterns must be comparable to the arcade ratings.

• For songs of 1 feet, the arrows must be well spaced, usually occurring
only once every third or fourth beat. Double jumps must be rare and only
up-down or left-right. No offbeats are allowed.

• For songs of 2 feet the arrows may be spaced more closely.
• For songs of 3 feet the arrows may occur on every beat, but consecutive

runs of arrows should not last long. Simple patterns of single arrows can
occur. Simple double jumps can occur more often.
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• For songs of 4 feet long periods of consecutive arrows usually occur.
Offbeats may occur, but should be infrequent. Simple double jumps can
occur very often.

• For songs of 5 feet offbeats may be a little more frequent. Complex
doubles jumps, corner jumps, can occur often.

• For songs of 6 feet offbeats can occur frequently. Runs of offbeats should
not be too longs and should have periods of rest in-between.

• Songs of 7 feet and above may contain any valid moves and should
contain long complex patterns of arrows with many offbeats and complex
double jumps.

Harder difficulty levels should contain more arrows per song than easier difficulty
levels. A user of DWI has quantified the standard limits of number of arrows for
each difficulty level [25]. These limits are shown below.

Level Minimum Maximum
1 1 step 106 steps
2 107 steps 136 steps
3 137 steps 170 steps
4 171 steps 194 steps
5 195 steps 228 steps
6 229 steps 262 steps
7 263 steps 305 steps
8 306 steps 366 steps
9 367 steps ∞

These rules can be altered slightly for songs with very low BPMs. In this case
offbeat arrows appear more frequently and in much greater density.

The arrows that are generated must seem to ‘flow’ correctly. This means that
while playing you should be able to follow the arrows in a manner where your
body can flow smoothly with the arrows. This means there should not be forced
to cross you legs or awkwardly swap feet just to hit all the arrows.

The system must be able to run on at least one of the same Windows platforms as
DWI and StepMania. This would ideally be Windows XP. Support for other
platforms should be included if possible.

It must be possible to run the program as a command line utility. The system must
be able to run in a non-interactive mode to facilitate its use by other programs.

The system must have command line options that enable the user to:

• Specify which music file to generate a step file for.
• Specify the output type of the step file (dwi, sm).
• Specify which difficulty modes to produce patterns for.
• Specify, in feet, the difficulty level of each of the patterns.
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• Specify the output location of the step file.
• Specify if the music file should also be copied to the same location as the

step file.

The system must be able to generate a complete step file, including a different
pattern for each difficulty mode, within a reasonable time. The system does not
have to generate the patterns in real time. A reasonable time is defined to be
roughly 10 minutes. This time limit is one of the least important areas of the
specification, as the step files are likely to be generated only once, but played
many times.

The system must be able to detect features of the song, such as areas that are quiet
and areas that are very busy. The system should then use this information to
produce arrow streams that reflect this; with quiet sections have only a few simple
arrows and the busy sections containing complex and difficult arrow patterns.
Other salient features of the music should be extracted as required to ensure that
the generated arrow patterns are as good as possible.

11.2.3 Extensions
If there is time permitting, there are various extensions to the project that could be
implemented to improve the quality of the step files produced by the system.

The system could allow the user to specify the difficulty level of the patterns
generated as values on the groove radar. The user gives values for Voltage,
Stream, Chaos, Freeze, and Air on a scale between 0 and 1. The system will then
output a step file such that when the file is loaded in StepMania the groove radar
displays values as close as possible to those given by the user.

The music analysis section of the system could be improved to cope with songs
during which the BPM changes between distinct values. There are songs in
existing mixes of DDR in which changes in beat occur. The system should be
able to detect the correct BPM for each section as well as correctly determining
the position of the change. The system does not need to cope with songs in which
the beat changes rapidly, or many times.

The music analysis system could also be improved to detect pauses in the song.
These pauses can be translated directly into pauses in the step file, where the
arrows on the screen stop for the duration of the pause. There are songs in the
existing DDR mixes during which the arrows stop moving when there is a pause
in the song.

The arrow generation system could be improved so that it can generate arrow
patterns for Doubles mode, where a single player dances using both pads. The
generated arrow patterns should be in the same style as the patterns used in the
arcade Doubles mode. It is important that the arrows flow between the two pads
in such a way that it is possible for the user to hit all the arrows. This is important
because the user now has to dance using both pads and it is very easy to create
combinations of arrows that are physically impossible to dance to, such as the left
arrow on the left pad followed immediately by the right arrow on the right pad.


